Ⅰ 铣床高速主轴有什么选择要求
高速电主轴是最近几年在数控机床领域出现的将机床主轴与主轴电机融为一体的新技术。高速数控机床主传动系统取消了带轮传动和齿轮传动。机床主轴由内装式电动机直接驱动,从而把机床主传动链的长度缩短为零,实现了机床的“零传动”。这种主轴电动机与机床主轴“合二为一”的传动结构形式,使主轴部件从机床的传动系统和整体结构中相对独立出来,因此可做成“主轴单元”,俗称“电主轴”。
高速电主轴所融合的技术:
电主轴是最近几年在数控机床领域出现的将机床主轴与主轴电机融为一体的新技术,它与直线电机技术、高速刀具技术一起,将会把高速加工推向一个新时代。电主轴是一套组件,它包括电主轴本身及其附件:电主轴、高频变频装置、油雾润滑器、冷却装置、内置编码器、换刀装置。
高速电主轴所融合的技术:
高速轴承技术:电主轴通常采用复合陶瓷轴承,耐磨耐热,寿命是传统轴承的几倍;有时也采用电磁悬浮轴承或静压轴承,内外圈不接触,理论上寿命无限;
高速电机技术:电主轴是电动机与主轴融合在一起的产物,电动机的转子即为主轴的旋转部分,理论上可以把电主轴看作一台高速电动机。关键技术是高速度下的动平衡;
润滑:电主轴的润滑一般采用定时定量油气润滑;也可以采用油脂润滑,但相应的速度要打折扣。所谓定时,就是每隔一定的时间间隔注一次油。所谓定量,就是通过一个叫定量阀的器件,精确地控制每次润滑油的油量。而油气润滑,指的是润滑油在压缩空气的携带下,被吹入陶瓷轴承。油量控制很重要,太少,起不到润滑作用;太多,在轴承高速旋转时会因油的阻力而发热。
冷却装置:为了尽快给高速运行的电主轴散热,通常对电主轴的外壁通以循环冷却剂,冷却装置的作用是保持冷却剂的温度。
内置脉冲编码器:为了实现自动换刀以及刚性攻螺纹,电主轴内置一脉冲编码器,以实现准确的相角控制以及与进给的配合。
自动换刀装置:为了应用于加工中心,电主轴配备了自动换刀装置,包括碟形簧、拉刀油缸等;
高速刀具的装卡方式:广为熟悉的BT、ISO刀具,已被实践证明不适合于高速加工。这种情况下出现了HSK、SKI等高速刀具。
高频变频装置:要实现电主轴每分钟几万甚至十几万转的转速,必须用一高频变频装置来驱动电主轴的内置高速电动机,变频器的输出频率必须达到上千或几千赫兹。
高速主轴的优势分析:
在高速主轴单元中,由于机床既要进行粗加工,也要进行精加工,因此对主轴单元提出了较高的静刚度和工作精度的要求。另外,高速机床主轴单元的动态特性也在很大程度上决定或者制约了机床的价格质量和切削能力。当切削过程出现较大的在振动时,会使刀具出现剧烈的磨损或破损,也会增加主轴轴承所承受的动载荷,降低轴承的精度和寿命,影响加工精度和表面质量。因此,主轴单元应具有较高的抗振性。
相比一般的传统主轴,电主轴将电机内置,传动上摒弃了皮带和齿轮,在高速运转情况下,很好的解决了振动和噪声问题,提高了机床的加工精度和加工表面粗糙度,可以最快地实现较高的速度变化,即主轴回转时要具有极大的角加速度,这极大的提高了生产效率。
用在高精度机床上的电主轴,不但要求主轴转速高,而且要求其旋转精度也高、并且振动小。因此,在电主轴的设计阶段,必须对它进行动力学特性分析,以确定其各阶临界转速和各阶振型。对于高速轴系,其转子动力学性能的分析和设计是直接决定主轴性能设计的一项重要内容。主轴的转子动力学性能如何,对整台机床能否实现高速加工以及加工精度、主轴轴承的寿命和其它关键部件的正常工作等方面都有着至关重要的影响。另外,陶瓷角接触球轴承具有制造精度高、极限转速高、承载能力强,能同时承受径向和轴向载荷等特点而被广泛地应用于高速机床主轴的支承中。轴承内部各元件的运动及所受载荷比较复杂,特别是高速球轴承中,离心力和陀螺力矩作用的结果使轴承的运转状态发生变化,影响到轴承的变形与载荷关系特性,从而影响到球轴承支撑的转子系统的动力学性能。
高速主轴电机的转速选择:
高速主轴电机,不管轻金属加工还是重金属加工,其的选择都根据加工材料的本质来选择转速。加工密度高的材料之所以要选择24000~60000转,是因为材料密度高,硬度强,低转速加工会造成出行毛边,表面不光滑等现象。加工低密度的材料之所以选择3000~24000转的,是因为高转速对低密度材料来说有造成拉裂的危险等因素。
高速主轴的变速方式:
1、无级变速
数控机床一般采用直流或交流主轴伺服电动机实现主轴无级变速。
交流主轴电动机及交流变频驱动装置(笼型感应交流电动机配置矢量变换变频调速系统),由于没有电刷,不产生火花,所以使用寿命长,且性能已达到直流驱动系统的水平,甚至在噪声方面还有所降低。因此,目前应用较为广泛。
主轴传递的功率或转矩与转速之间的关系。当机床处在连续运转状态下,主轴的转速在437~3500r/min范围内,主轴传递电动机的全部功率11kW,为主轴的恒功率区域Ⅱ(实线)。在这个区域内,主轴的最大输出扭矩(245N.m)随着主轴转速的增高而变小。主轴转速在35~437r/min范围内,主轴的输出转矩不变,称为主轴的恒转矩区域Ⅰ(实线)。在这个区域内,主轴所能传递的功率随着主轴转速的降低而减小。图中虚线所示为电动机超载(允许超载30min)时,恒功率区域和恒转矩区域。电动机的超载功率为15kW,超载的最大输出转矩为334N.m。
2、分段无级变速
数控机床在实际生产中,并不需要在整个变速范围内均为恒功率。一般要求在中、高速段为恒功率传动,在低速段为恒转矩传动。为了确保数控机床主轴低速时有较大的转矩和主轴的变速范围尽可能大,有的数控机床在交流或直流电动机无级变速的基础上配以齿轮变速,使之成为分段无级变速。
高速主轴的润滑方式:
高速主轴的主轴轴承常见的润滑方式有脂润滑、油雾润滑、油气润滑、喷射润滑及环下润滑等。
脂润滑不需任何设备,是低速主轴普遍采用的润滑方式。dn值在1.0×106以上的主轴,多采用油润滑的方式。
油雾润滑是将润滑油(如透平油)经压力空气雾化后对轴承进行润滑的。这种方式实现容易,设备简单,油雾既有润滑功能,又能起到冷却轴承的作用,但油雾不易回收,对环境污染严重,故逐渐被新型的油气润滑方式所取代。
油气润滑是将少量的润滑油不经雾化而直接由压缩空气定时、定量地沿着专用的油气管道壁均匀地被带到轴承的润滑区。润滑油起润滑的作用,而压缩空气起推动润滑油运动及冷却轴承的作用。油气始终处于分离状态,这有利于润滑油的回收,而对环境却没有污染。实施油气润滑时,一般要求每个轴承都有单独的油气喷嘴,对轴承喷射处的位置有严格的要求,否则不易保证润滑效果,油气润滑的效果还受压缩空气流量和油气压力的影响。一般地讲,增大空气流量可以提高冷却效果,而提高油气压力,不仅可以提高冷却效果,而且还有助于润滑油到达润滑区,因此,提高油气压力有助于提高轴承的转速。
实验表明,加大压力比采用常规压力进行油气润滑可使轴承的转速提高20%。喷射润滑是直接用高压润滑油对轴承进行润滑和冷却的,功率消耗较大,成本高,常用在dn值为2.5×106以上的超高速主轴上。
环下润滑是一种改进的润滑方式,分为环下油润滑和环下油气润滑。实施环下油或者油气润滑时,润滑油或油气从轴承的内圈喷入润滑区,在离心力的作用下润滑油更易于到达轴承润滑区,因而比普通的喷射润滑和油气润滑效果好,可进一步提高轴承的转速,如普通油气润滑,角接触陶瓷球轴承的dn值为2.0×106左右,采用加大油气压力的方法可将dn值提高到2.2×106,而采用环下油气润滑则可达到2.5×106。
Ⅱ X62铣床主轴怎么选择合适的
X62万能升降台铣床主轴锥孔可直接或通过附件安装各种圆柱铣刀、圆片铣刀、成型铣刀、端面铣刀等刀具,适于加工各种零件的平面、斜面、沟槽、孔等。该机床具有足够的刚性和功率,拥有强大的加工能力,能进行高速和承受重负荷的切削工作,齿轮加工。适合模具特殊钢加工、矿山设备、产业设备等重型大型机械加工。万能铣床的工作台可向左、右各回转45°,当工作台转动一定角度,采用分度头附件时,可以加工各种螺旋面。
铣床的主要关键部件是主轴箱,安装在立柱侧面,也有少数厂家采用双立柱的热对称结构,将主轴箱置于立柱中间,这种结构最大特点是刚性、平衡性、散热性能好,为主轴箱高速运行提供了可靠保证。品质铣床主轴选择认准,主轴系统主要有两种结构型式,一种是传统的镗杆伸缩式结构,具有镗深孔及大功率切削的特点;另一种是现代高速电主轴结构,具有转速高,运行速度快,高效、高精的优点。高速电主轴在铣床上的应用越来越多,除了主轴速度和精度大幅提高外,还简化了主轴箱内部结构,缩短了制造周期,尤其是能进行高速切削,电主轴转速最高可大10000r/min以上。不足之处在于功率受到限制,其制造成本较高,尤其是不能进行深孔加工。主轴箱移动多通过电机驱动滚珠丝杆进行传动,是主轴驱动核心传动装置,多采用静压轴承支承,由伺服电机驱动滚珠丝杆进行驱动。由于主轴转速越来越高,主轴升温快,已有很多厂家将采用油雾冷却以替代油冷却,更有效地控制主轴升温,使其精度得到有效保证。
机床主轴指的是机床上带动工件或刀具旋转的轴。通常由主轴、轴承和传动件(齿轮或带轮)等组成主轴部件。选择X62铣床主轴认准,专业品质保障;在机器中主要用来支撑传动零件如齿轮、带轮,传递运动及扭矩,如机床主轴;有的用来装夹工件,如心轴。除了刨床、拉床等主运动为直线运动的机床外,大多数机床都有主轴部件。主轴部件的运动精度和结构刚度是决定加工质量和切削效率的重要因素。衡量主轴部件性能的指标主要是旋转精度、刚度和速度适应性。
①旋转精度:主轴旋转时在影响加工精度的方向上出现的径向和轴向跳动(见形位公差),主要决定于主轴和轴承的制造和装配质量。
②动、静刚度:主要决定于主轴的弯曲刚度、轴承的刚度和阻尼。
③速度适应性:允许的最高转速和转速范围,主要决定于轴承的结构和润滑,以及散热条件。
主轴端部跳动包括3项:a、主轴定心轴颈径向跳动;b、主轴轴向窜动;c、主轴轴肩支承面跳动。c项实质是检验主轴轴肩对主轴旋转轴线的垂直度。它不仅反映主轴端面的跳动,还反映出主轴中间轴承装配精度是否在公差之内。由于主轴端面跳动量包含着主轴轴向窜动量,这样端跳误差实际是主轴轴向窜动量与主轴轴肩支承面对主轴中心线垂直度的向量和。因此,此项应在主轴轴向窜动检验之后进行,其公差范围也大于主轴轴向窜动量的公差范围。a、b项公差均为0.01mm,c项公差为0.02mm。
调整方法a项精度超差将造成刀轴和铣刀的径向跳动以及铣刀振摆。在铣槽时会产生锥度,并影响槽宽或槽深及表面粗糙度;b项精度超差在铣削时会产生较大的震动和影响加工尺寸精度;c项精度超差会引起以轴肩支承面为安装基准的铣刀的端面跳动,从而影响加工精度及表面粗糙度。a、c两项检验的是装刀定位面的精度,并与主轴自身精度有关。故主轴加工精度高,可保证不超差。当主轴前轴承间隙大时,会引起主轴摆动,也会增大径向跳动量,故a项超差时,应对前轴承进行调整。影响b项误差的因素主要是主轴轴向定位轴承,故当b项超差时,应调整主轴后轴承间隙。
Ⅲ 铣床机械主轴怎么判断选择
机床主轴指的是机床上带动工件或刀具旋转的轴。通常由主轴、轴承和传动件(齿轮或带轮)等组成主轴部件。主轴是机器中最常见的一种零件,主要由内外圆柱面螺纹花键和横向孔组成,主轴的作用是机床的执行件,它主要起支撑传动件和传动转矩的作用,在工作时由它带动工件直接参加表面成形运动,同时主轴还保证工件对机床其他部件有正确的相对位置。
机械主轴指的是机床上带动工件或刀具旋转的轴。通常由主轴、轴承和传动件(齿轮或带轮)等组成主轴部件。在机器中主要用来支撑传动零件如齿轮、带轮,传递运动及扭矩,如机床主轴;有的用来装夹工件,如心轴。除了刨床、拉床等主运动为直线运动的机床外,大多数机床都有主轴部件。
机械主轴的特点就是三高一低(即:高速度、高精度、高效率、低噪音)。
1、高速度:机械主轴CNC雕铣机选用精密及高速的配对轴承,弹性/刚性预紧结构,可以达到较高的转速,可以让刀具达到最佳的切削效果。
2、高速度:7:24锥孔针对安装甚而的径向跳动可以确保小于0.005mm。因为高精度的加上高精度的零件制造就可以确保了。
3、高效率:可以利用连续微高来改变速度,使得在加工过程中可以随时控制切削速度,这样就可以达到高加工效率。
4、低噪音:平衡测试表明:凡是达到了G1/G0.4(ISO1940-1等级的,主轴在高速运转时,具有噪音小的特点。
机械主轴的精度:
主轴部件的运动精度和结构刚度是决定加工质量和切削效率的重要因素。衡量主轴部件性能的指标主要是旋转精度、刚度和速度适应性。
①旋转精度:主轴旋转时在影响加工精度的方向上出现的径向和轴向跳动(见形位公差),主要决定于主轴和轴承的制造和装配质量。
②动、静刚度:主要决定于主轴的弯曲刚度、轴承的刚度和阻尼。
③速度适应性:允许的最高转速和转速范围,主要决定于轴承的结构和润滑,以及散热条件。
机械主轴的保养:
降低轴承的工作温度,经常采用的办法是润滑油。润滑方式有,油气润滑方式、油液循环润滑两种。在使用这两种方式时要注意以下几点:
1、在采用油液循环润滑时,要保证主轴恒温油箱的油量足够充分。
2、油气润滑方式刚好和油液循环润滑相反,它只要填充轴承空间容量的百分之十时即可。
循环式润滑的优点是,在满足润滑的情况下,能够减少摩擦发热,而且能够把主轴组件的一部分热量给以吸收。
对于主轴的润滑同样有两种放式:油雾润滑方式和喷注润滑方式。
机械主轴的变速方式:
1、无级变速
数控机床一般采用直流或交流主轴伺服电动机实现主轴无级变速。
交流主轴电动机及交流变频驱动装置(笼型感应交流电动机配置矢量变换变频调速系统),由于没有电刷,不产生火花,所以使用寿命长,且性能已达到直流驱动系统的水平,甚至在噪声方面还有所降低。因此,目前应用较为广泛。
主轴传递的功率或转矩与转速之间的关系。当机床处在连续运转状态下,主轴的转速在437~3500r/min范围内,主轴传递电动机的全部功率11kW,为主轴的恒功率区域Ⅱ(实线)。在这个区域内,主轴的最大输出扭矩(245N.m)随着主轴转速的增高而变小。主轴转速在35~437r/min范围内,主轴的输出转矩不变,称为主轴的恒转矩区域Ⅰ(实线)。在这个区域内,主轴所能传递的功率随着主轴转速的降低而减小。图中虚线所示为电动机超载(允许超载30min)时,恒功率区域和恒转矩区域。电动机的超载功率为15kW,超载的最大输出转矩为334N.m。
2、分段无级变速
数控机床在实际生产中,并不需要在整个变速范围内均为恒功率。一般要求在中、高速段为恒功率传动,在低速段为恒转矩传动。为了确保数控机床主轴低速时有较大的转矩和主轴的变速范围尽可能大,有的数控机床在交流或直流电动机无级变速的基础上配以齿轮变速,使之成为分段无级变速。
机械主轴的发展形势:
10世纪30年代以前,大多数机床的主轴采用单油楔的滑动轴承。随着滚动轴承制造技术的提高,后来出现了多种主轴用的高精度、高刚度滚动轴承。这种轴承供应方便,价格较低,摩擦系数小,润滑方便,并能适应转速和载荷变动幅度较大的工作条件,因而得到广泛的应用。但是滑动轴承具有工作平稳和抗振性好的优点,特别是各种多油楔的动压轴承,在一些精加工机床如磨床上用得很多。50年代以后出现的液体静压轴承,精度高,刚度高,摩擦系数小,又有良好的抗振性和平稳性,但需要一套复杂的供油设备,所以只用在高精度机床和重型机床上。气体轴承高速性能好,但由于承载能力小,而且供气设备也复杂,主要用于高速内圆磨床和少数超精密加工机床上。70年代初出现的电磁轴承,兼有高速性能好和承载能力较大的优点,并能在切削过程中通过调整磁场使主轴作微量位移,以提高加工的尺寸精度,但成本较高,可用于超精密加工机床。
Ⅳ X53K立式铣床主轴怎么选择合适
X5040立式铣床(也叫立式铣床)属于铣床中广泛应用的一种机床,是一种强力金属切削机床,该机床刚性强,进给变速范围广,能承受重负荷切屑。X5040立式铣床主轴锥孔(X53K立式铣床主轴锥孔)可直接或通过附件安装各种圆柱铣刀、圆片铣刀、成型铣刀、端面铣刀等,适于加工各种零件的平面、斜面、沟槽、孔等,是机械制造、模具、仪器、仪表、汽车、摩托车等行业的理想加工设备。
X5040立式铣床主轴(X53K立式铣床主轴)指的是机床上带动工件或刀具旋转的轴。通常由主轴、轴承和传动件(齿轮或带轮)等组成主轴部件。在机器中主要用来支撑传动零件如齿轮、带轮,传递运动及扭矩。X5040立式铣床主轴(X53K立式铣床主轴)部件的运动精度和结构刚度是决定加工质量和切削效率的重要因素。衡量主轴部件性能的指标主要是旋转精度、刚度和速度适应性。
①旋转精度:主轴旋转时在影响加工精度的方向上出现的径向和轴向跳动(见形位公差),主要决定于主轴和轴承的制造和装配质量。
②动、静刚度:主要决定于主轴的弯曲刚度、轴承的刚度和阻尼。
③速度适应性:允许的最高转速和转速范围,主要决定于轴承的结构和润滑,以及散热条件。
X5040立式铣床(X53K立式铣床)结构特点:
X5040立式升降台铣床(X53K立式铣床)属于通用机床,特别适用于单件、小批生产和工具、修理部门,也可用于成批。X5040立式升降台铣床可用各种圆柱铣刀、圆片铣刀、角铣刀、成型铣刀和端面铣刀加工各种平面、斜面、沟槽齿轮等。可选配万能铣头、圆工作台、分度头等铣床附件,扩大加范围。
1、X5040立式升降台铣床(X53K立式铣床)刚性好,能承载重负荷切削。
2、机床主轴电机功率高,变速范围广,充分发挥刀具效能,高速切削。
3、机床易磨损铸件采用钒钛耐磨铸铁,重要部位采用优质合金钢,稳定耐用。
4、X5040立式升降台铣床(X53K立式铣床)有完善的润滑系统。
Ⅳ 铣床主轴有哪些选择标准
机床主轴是装夹工件或刀具的基准,并将运动和动力传给工件或刀具,主轴回转误差将直接影响被加工工件的精度。
主轴回转误差是指主轴各瞬间的实际回转轴线相对其平均回转轴线的变动量。它可分解为径向圆跳动、轴向窜动和角度摆动三种基本形式。
产生主轴径向回转误差的主要原因有:主轴几段轴颈的同轴度误差、轴承本身的各种误差、轴承之间的同轴度误差、主轴绕度等。但它们对主轴径向回转精度的影响。大小随加工方式的不同而不同。
譬如,在采用滑动轴承结构为主轴的车床上车削外圆时,切削力F的作用方向可认为大体上时不变的,在切削力F的作用下,主轴颈以不同的部位和轴承内径的某一固定部位相接触,此时主轴颈的圆度误差对主轴径向回转精度影响较大,而轴承内径的圆度误差对主轴径向回转精度的影响则不大;在镗床上镗孔时,由于切削力F的作用方向随着主轴的回转而回转,在切削力F的作用下,主轴总是以其轴颈某一固定部位与轴承内表面的不同部位接触,因此,轴承内表面的圆度误差对主轴径向回转精度影响较大,而主轴颈圆度误差的影响则不大。
主轴是主轴部件中的关键零件。主轴的结构尺寸和形状、制造精度、材料及热处理等对主轴部件的工作性能有很大的影响。主轴结构随主轴系统设计要求的不同而有多种形式。
主轴的主要尺寸参数包括:主轴直径、内孔直径、悬伸长度和支承跨距。决定主轴主要尺寸参数的依据是主轴的刚度、结构工艺和主轴部件的工艺适用范围。
主轴的主要尺寸参数:
①主轴直径:主轴直径越大,其刚度越高,但轴承和主轴上其零件的尺寸也相应增大。轴承直径越大,同等级精度轴承的公差值也就越大,要保证主轴的旋转精度就越困难,同时极限转速也下降。主轴后端支承轴颈的直径一般为前支承轴颈的0.7—0.8倍,实际尺寸要到主轴组件设计时确定。前、后轴颈的差值越小则主轴的刚度越高,工艺性能也越好。
②主轴内孔直径:主轴内孔是用来通过棒料及刀具夹紧装置,也可用于通过气动、液压卡盘的联结件。主轴内孔直径越大,可通过棒料的直径就越大,机床的使用范围就越宽,同时主轴部件也越轻。主轴内孔直径的大小主要受主轴刚度的制约。当主轴内孔直径与主轴直径之比小于0.3时,空心主轴的刚度几乎与实心主轴的刚度相当:当主轴内孔直径与主轴直径之比为0.5时,空心主轴的刚度为实心主轴的刚度90%;当主轴内孔直径与主轴直径之比大于0.7时,空心主轴的刚度急剧下降。
③悬伸长度主轴与主轴前端结构的形状尺寸、前轴承的类型和组合方式及轴承的润滑与密封有关。主轴的悬伸长度对主轴的刚度影响很大,主轴的悬伸长度越短,其刚度约好。
④支承跨度主要部件的支承跨距对主轴的刚度有很大的影响。跨距对主轴部件综合刚度的影响不是单向的。如跨距越大,则主轴变形较大;如跨距较小,则轴承的变形对主轴前端的位移影响较大。所以跨距要有一个最佳值,跨距太大或太小,都会降低主轴的综合刚度。
铣床:是用铣刀对工件进行铣削加工的机床。铣床除能铣削平面、沟槽、轮齿、螺纹和花键轴外,还能加工比较复杂的型面,效率较刨床高,在机械制造和修理部门得到广泛应用。刨床:用刨刀对工件的平面、沟槽或成形表面进行刨削的直线运动机床。使用刨床加工,刀具较简单,但生产率较低(加工长而窄的平面除外),因而主要用于单件,小批量生产及机修车间,在大批量生产中往往被铣床所代替。根据结构和性能,刨床主要分为牛头刨床、龙门刨床、单臂刨床及专门化刨床(如刨削大钢板边缘部分的刨边机、刨削冲头和复杂形状工件的刨模机)等。
Ⅵ x62w铣床主轴怎么判断选择
X6132万能铣床是卧式铣床中,通常也被称为x62w铣床,x6132万能升降台铣床,在工业制造中广泛的被应用。X6132铣床是一种强力金属切削机床,该机床刚性强,进给变速范围广,能承受重负荷切屑。主轴锥孔可直接或通过附件安装各种圆柱铣刀、圆片铣刀、成型铣刀、端面铣刀等刀具,适于加工各种零件的平面、斜面、沟槽、孔等。
机床主轴指的是机床上带动工件或刀具旋转的轴。通常由主轴、轴承和传动件(齿轮或带轮)等组成主轴部件。在机器中主要用来支撑传动零件如齿轮、带轮,传递运动及扭矩,如机床主轴;有的用来装夹工件,如心轴。除了刨床、拉床等主运动为直线运动的机床外,大多数机床都有主轴部件。主轴部件的运动精度和结构刚度是决定加工质量和切削效率的重要因素。衡量主轴部件性能的指标主要是旋转精度、刚度和速度适应性。①旋转精度:主轴旋转时在影响加工精度的方向上出现的径向和轴向跳动(见形位公差),主要决定于主轴和轴承的制造和装配质量。②动、静刚度:主要决定于主轴的弯曲刚度、轴承的刚度和阻尼。③速度适应性:允许的最高转速和转速范围,主要决定于轴承的结构和润滑,以及散热条件。
X6132型万能铣床(x62w铣床)的外形结构,它主要由床身、主轴、刀杆、悬梁、工作台、回转盘、横溜板、升降台、底座等几部分组成。在床身的前面有垂直导轨,升降台可沿着它上下移动。在升降台上面的水平导轨上,装有可在平行主轴轴线方向移动(前后移动)的溜板。溜板上部有可转动的回转盘,工作台就在溜板上部回转盘上的导轨上作垂直于主轴轴线方向移动(左右移动)。工作台上有T形槽用来固定工件。这样,安装在工作台上的工件就可以在三个坐标上的六个方向调整位置或进给。铣床主轴带动铣刀的旋转运动是主运动;铣床工作台的前后(横向)、左右(纵向)和上下(垂直)6个方向的运动是进给运动;铣床其他的运动,如工作台的旋转运动、在各个方向的快速移动则属于辅助运动。
X6132型万能铣床(x62w铣床)机床特性:
1、底座、机身、工作台、中滑座、升降滑座等主要构件均采用高强度材料而成,保证机床长期使用的稳定性。
2、机床主轴轴承为圆锥滚子轴承,主轴采用三支承结构,主轴的系统刚度好,承载能力强,且主轴采用能耗制动,制动转矩大,停止迅速、可靠。
3、工作台水平回转角度±45°,拓展机床的加工范围。主传动部分和工作台进给部分均采用齿轮变速结构,调速范围广,变速方便,快捷。
4、工作台X/Y/Z向有手动进给、机动进给和机动快进三种,进给速度能满足不同的加工要求;快速进给可使工件迅速到达加工位置,加工方便、快捷,缩短非加工时间。
5、X、Y、Z三方向导轨副经超音频淬火、精密磨削及刮研处理,配合强制润滑,提高精度,延长机床的使用寿命。
6、润滑装置可对纵、横、垂向的丝杠及导轨进行强制润滑,减小机床的磨损,保证机床的高效运转;同时,冷却系统通过调整喷嘴改变冷却液流量的大小,满足不同的加工需求。
7、机床设计符合人体工程学原理,操作方便;操作面板均使用形象化符号设计,简单直观。
Ⅶ 活扳手 铣床主轴用什么方式制造毛坯
批量:大批;材料:45钢;毛坯:模锻件
(1)材料 在单件小批生产中,轴类零件的毛坯往往使用热轧棒料。
对于直径差较大的阶梯轴,为了节约材料和减少机械加工的劳动量,则往往采用锻件。单件小批生产的阶梯轴一般采用自由锻,在大批大量生产时则采用模锻。
(2)热处理
45钢,在调质处理(235hbs)之后,再经局部高频淬火,可以使局部硬度达到hrc62~65,再经过适当的回火处理,可以降到需要的硬度(例如 ca6140主轴规定为 hrc52)。
9mn2v,这是一种含碳0.9%左右的锰钒合金工具钢,淬透性、机械强度和硬度均比45钢为优。经过适当的热处理之后,适用于高精度机床主轴的尺寸精度稳定性的要求。例如,万能外圆磨床m1432a头架和砂轮主轴就采用这种材料。
38crmoal,这是一种中碳合金氮化钢,由于氮化温度比一般淬火温度为低540—550℃,变形更小,硬度也很高(hrc>65,中心硬度hrc>28)并有优良的耐疲劳性能,故高精度半自动外圆磨床mbg1432的头架轴和砂轮轴均采用这种钢材。
此外,对于中等精度而转速较高的轴类零件,多选用40cr等合金结构钢,这类钢经调质和高频淬火后,具有较高的综合机械性能,能满足使用要求。有的轴件也选用滚珠轴承钢如 gcr15和弹簧钢如 66mn等材料.这些钢材经调质和表面淬火后,具有极高的耐磨性和耐疲劳性能。当要求在高速和重载条件下工作的轴类零件,可选用18crmnti、20mn2b等低碳含金钢,这些钢料经渗碳淬火后具有较高的表面硬度、冲击韧性和心部强度,但热处理所引起的变形比38crmoal为大。
凡要求局部高频淬火的主轴,要在前道工序中安排调质处理(有的钢材则用正火), 当毛坯余量较大时(如锻件),调质放在粗车之后、半精车之前,以便因粗车产生的内应力得以在调质时消除;当毛坯余量较小时(如棒料),调质可放在粗车(相当于锻件的半精车)之前进行。高频淬火处理一般放在半精车之后,由于主轴只需要局部淬硬,故精度有一定要求而不需淬硬部分的加工,如车螺纹、铣键槽等工序,均安排在局部淬火和粗磨之后。对于精度较高的主轴在局部淬火及粗磨之后还需低温时效处理,从而使主轴的金相组织和应力状态保持稳定。
Ⅷ 铣床高频主轴怎么判断选择
电主轴是最近几年在数控机床领域出现的将机床主轴与主轴电机融为一体的新技术。电主轴是一套组件,它包括电主轴本身及其附件:电主轴、高频变频装置、油雾润滑器、冷却装置、内置编码器、换刀装置等。电动机的转子直接作为机床的主轴,主轴单元的壳体就是电动机机座,并且配合其他零部件,实现电动机与机床主轴的一体化。
随着电气传动技术(变频调速技术、电动机矢量控制技术等)的迅速发展和日趋完善,高速数控机床主传动系统的机械结构已得到极大的简化,基本上取消了带轮传动和齿轮传动。机床主轴由内装式电动机直接驱动,从而把机床主传动链的长度缩短为零,实现了机床的“零传动”。这种主轴电动机与机床主轴“合二为一”的传动结构形式,使主轴部件从机床的传动系统和整体结构中相对独立出来,因此可做成“主轴单元”,俗称“电主轴”。由于当前电主轴主要采用的是交流高频电动机,故也称为“高频主轴”。由于没有中间传动环节,有时又称它为“直接传动主轴”。特性为高转速、高精度、低噪音、内圈带锁口的结构更适合喷雾润滑。
高频主轴的技术结构:
1、高速轴承技术
电主轴通常采用动静压轴承、复合陶瓷轴承或电磁悬浮轴承。
动静压轴承具有很高的刚度和阻尼,能大幅度提高加工效率、加工质量、延长刀具寿命、降低加工成本,这种轴承寿命多半无限长。
复合陶瓷轴承目前在电主轴单元中应用较多,这种轴承滚动体使用热压Si3N4陶瓷球,轴承套圈仍为钢圈,标准化程度高,对机床结构改动小,易于维护。
电磁悬浮轴承高速性能好,精度高,容易实现诊断和在线监控,但是由于电磁测控系统复杂,这种轴承价格十分昂贵,而且长期居高不下,至今没有得到广泛应用。
2、高速电机技术
电主轴是电动机与主轴融合在一起的产物,电动机的转子即为主轴的旋转部分,理论上可以把电主轴看作一台高速电动机。关键技术是高速度下的动平衡;
3、冷却装置
为了尽快给高速运行的电主轴散热,通常对电主轴的外壁通以循环冷却剂,冷却装置的作用是保持冷却剂的温度。
4、内置脉冲编码器
为了实现自动换刀以及刚性攻螺纹,电主轴内置一脉冲编码器,以实现准确的相角控制以及与进给的配合。
5、自动换刀装置
为了应用于加工中心,电主轴配备了自动换刀装置,包括碟形簧、拉刀油缸等;
6、高速刀具的装卡方式
广为熟悉的BT、ISO刀具,已被实践证明不适合于高速加工。这种情况下出现了HSK、SKI等高速刀具。
7、高频变频装置
要实现电主轴每分钟几万甚至十几万转的转速,必须用一高频变频装置来驱动电主轴的内置高速电动机,变频器的输出频率必须达到上千或几千赫兹。
高频主轴的结构精度说明及油气润滑:
电主轴由无外壳电机、主轴、轴承、主轴单元壳体、驱动模块和冷却装置等组成。电机的转子采用压配方法与主轴做成一体,主轴则由前后轴承支承。电机的定子通过冷却套安装于主轴单元的壳体中。主轴的变速由主轴驱动模块控制,而主轴单元内的温升由冷却装置限制。在主轴的后端装有测速、测角位移传感器,前端的内锥孔和端面用于安装刀具。
电主轴是一个高精度的执行元件,而影响电主轴回转精度的主要因素有:
①主轴误差
主要包括主轴支承轴颈的圆度误差、同轴度误差(使主轴轴心线发生偏斜)和主轴轴颈轴向承载面与轴线的垂直度误差(影响主轴轴向窜动量)
②轴承误差
轴承误差包括滑动轴承内孔或滚动轴承滚道的圆度误差,滑动轴承内孔或滚动轴承滚道的波度,滚动轴承滚子的形状与尺寸误差,轴承定位端面与轴心线垂直度误差,轴承端面之间的平行度误差,轴承间隙以及切削中的受力变形等。
③主轴系统的径向不等刚度及热变形
从以上可以看出影响电主轴回转精度的主要原因就是轴承磨损,轴及接触面磨损。为了保证我们的电主轴能在保证精度的情况下正常工作,我们就要尽可能的降低轴承相关部位的磨损率,而降低磨损的主要方式就是润滑,对轴承进行润滑处理,保证良好的润滑及冷却效果。因此选择合理正确的润滑方式是保证电主轴正常工作的重要条件。
经过多年研究和一些客户的反应,油气润滑装置使用在电主轴上面被普遍认可,俗称“电主轴油气润滑装置”。电主轴油气润滑装置通俗的解释就是,油跟随气体的流动而往前运动。气体在运动过程中,会带动附着在管壁上面的少量油滴进入到两边的传动轴承,喷洒到摩擦面上的是带有油滴的油气混合体。这种润滑装置不仅经济、环保、快速、高效,更重要的是油滴适中,不会造成因油量过多轴承无法散热,也不会造成因油量过多,轴承在高速旋转过程中产生背压,避免了电主轴负载增加,更不会产生窜动现象。
高频主轴的保养:
(1)操作员在每天工作完后要使用吸尘器清理电主轴的转子端和电机接线端子上的废屑,防止废屑在转子端和接线端子上堆积,以此避免废屑进入轴承,加速高速轴承的磨损;避免废屑进入接线端子,造成电机短路烧毁。
(2)每次对电主轴更换刀具时,操作员必须要将压帽卡头拧下,不能使用直接插拔刀具的方法换刀!操作员要养成一个习惯,在卸刀后要将卡头和压帽清理干净。
(3)每天开机后操作员必须检查电主轴的冷却水流地工作状态,要检查水泵是否正常工作,要检查冷却水是否被水垢、微生物污染,要检查管路状态是否正常,必须要保证冷却水正常循环!严禁在电主轴内无冷却水通过的情况下开启电主轴!只有在正常冷却的前提下电主轴才能处于良好的工作状态。如果水管有死弯造成水流不畅或有污垢堵塞管道,就会造成电主轴无法正常工作,并会影响加工效果。
Ⅸ 铣床主轴电机的选择
铣床主轴电机选择:电机采用无外壳结构,定子硅钢片采用空气直接冷却,在浮尘和切削液飞溅的情况下,可安全可靠地工作。
与直流电动机相比,主轴电动机通常不需要维护,因为交流主轴电动机在结构上没有换向器。
主轴下级的增加不受换向器的限制,最大速度通常高于直流主轴的下级。
主轴电机的冷却空气从前端向后流动,可有效减少电机加热对机器精度的影响。
在冷却系统中,为了减小体积,提高效率,FANUC主轴电机采用特殊的企业热管冷却系统,可以快速将转子产生的热量散发到外面。
在磁路设计中,为了最大限度地减少电机发热,FANUC粥电机定子采用独特的附加磁极,以减少损耗,提高效率。
(9)铣床主轴的毛坯选择扩展阅读
数控铣床的主轴系统和进给系统是非常不同的。根据数控机床主传动的工作特点,早期的数控机床主轴传动采用三相异步电动机加多级齿轮箱的结构。
数控机床中使用的主轴驱动系统可分为两大类:直流主轴驱动系统和交流主轴驱动系统。根据这两种主轴驱动系统的特性选择主轴驱动系统:
直流主轴驱动系统的特点与通常的速度自动调节系统相比,数控机床的高速,高效,高精度控制要求使FANUC直流主轴驱动具有以下特点:
调速范围广,由FANUC主轴驱动的数控机床。在机械结构方面,小型机床通常采用电机和主轴直接或皮带移位的结构。
中型和大型机床通常只设置高速和低速。因此,机械变速机构必须通过主轴驱动来控制主轴电机的速度。为了保证数控机床的加工范围,加工过程相对集中,实现了理想的切削效果。主轴驱动必须实现无级变速,调节范围广。
结构上,FANUC直流主轴电机是一种全封闭结构,可用于灰尘和切削液飞溅的工业环境中。
交流主轴驱动系统
由于驱动系统采用微处理器和现代控制理论控制,系统运行平稳,振动和噪音小,可以获得较大的转速范围和较高的低速转矩,使CNC更加方便。机器匹配。
较大的动力驱动系统采用较为困难的“反馈制动”技术。制动时,电机能量可以反馈到电网,这可以节省能源并加快启动和制动速度。
变频器有D / A转换器,实际转速/转矩信号输出,电主轴“定向停止”,可轻松与各种CNC控制器匹配。
选择电机:
通过对上述两个主轴驱动系统的比较,交流主轴电机在工作环境,冷却系统和调速范围内优于直流主轴驱动系统。因此,根据这些方面的优点,本设计的主轴驱动系统采用交流主轴驱动系统。 。